
XML Compression Improvements Based on the
Clustering of Elements

Pavel Hruška, Jan Martinovič, Jiřı́ Dvorský, Václav Snášel
Department of Computer Science,

VŠB - Technical University of Ostrava
17. listopadu 15, 708 33

Ostrava-Poruba, Czech Republic
{pavel.hruska,jan.martinovic,jiri.dvorsky,vaclav.snasel}@vsb.cz

Abstract—This paper focuses on improvement of compression
of XML documents based on clustering and rearranging of
XML elements within XML documents. Such transformed XML
documents can be efficiently compressed.

I. INTRODUCTION

The modern information society produces immense quanti-
ties of textual information. Storing text effectively and search-
ing necessary information in stored texts are the tasks for
Information Retrieval Systems (IRS). The size of an IRS in-
creases with the increasing size of available external memories
of computers. Therefore, it is now possible to have a several
gigabyte IRS on one DVD. Similarly, with the growth of
Internet it is possible to have an easy remote access to an
extensive IRS, which is stored in an even bigger disk array
that operates on an Web server. We can only expect even
faster growth of memory capacity requirements in future. The
information explosion can be avoided basically in two ways:

1) Extensively - by purchasing higher capacity memories,
or

2) Intensively - by storing data in memories in a better way.
The first solution is not interesting in terms of research.

The key to the second solution is data compression. The
database of a typical IRS is a textual database, which stores
all information that is necessary for the function of the IRS.
Textual databases typically consist of the three following parts:

• Document full-texts that form a document collection
• Data structures for searching documents
• List of document identifiers and of their attributes and

other auxiliary structures
Haskin claims in [11] that the size of textual database

auxiliary structures (i.e. except actual document texts) makes
up 50% to 300% of the size of original documents. This
implies that a textual database is a suitable material for
compression. You only have to use one of lossless compression
methods to save more or less space.

However, the problem of compression in IRS is not as
simple as it seems at first sight. On the one hand, compression
saves space for data, however, on the other hand, it may entail
a certain operation overhead i.e. adding certain amount of
time to the cost of accessing the data. Also, the space saving
must be significant to be useful. Therefore, the objective is

not to compress the textual database as a whole. This usually
does not lead to good results since individual parts of an IRS
contain redundancies of different types; different data structure
types are based on a different model, according to which it is
possible to determine the best compression method.

Experiences show that it is useful to consider, analyze and
design the best compression method when storing extensive
textual databases. It also proves to be desirable to study highly
specialized compression methods that are convenient only for
a certain data type in an IRS. Even saving e.g. one bit in
data structures for searching and the improvement of text
compression ratio in an IRS by one percent result in savings
of tens of megabytes.

II. XML

One frequently used method of storing information in IRS
is XML language. The XML is now a very popular language
which is used in many areas of exchange and information stor-
age. Its advantage is particularly versatility, allowing everyone
to form his/her own language for various applications. XML
stores all information in text form – the data itself, as well as
information about the document structure. The structure of the
document consists of tags and attributes that give the meaning
of content contained therein. Therefore, XML is often called
as self-described data [23], [15].

The main disadvantage of XML language is it’s verbosity –
all information is stored in textual form (unicode characters),
and semantic information (tags) is repeated in each instance of
particular element. Repeated tags as well as XML white-spaces
used as XML formating and textual representation of all data
increases data storage needs and the final XML document is
usually much larger in comparision to native binary formats
designed for specific purposes. Another important fact we must
consider is that XML document must be parsed before we can
access it’s data and/or structure. Parsing XML utilizes CPU
and memory resources and parsing some large XML document
may be critical for systems with such limited resources.

III. XML COMPRESSION

In order to reduce space demands of XML document,
some kind of compression should be used. In general, XML
compression is looseless. There are available many XML



compressors up to date and we can classify them with respect
of two characteristics. The first classification is based on the
opportunity to work with XML in compressed form – on their
ability of supporting queries.

Queriable XML Compressors: These compressors focuses
on compressing XML document and also preserves oportu-
nity to query such compressed XML format. These methods
compress the XML document in pieces, their efficiency is
usually the worse (in comparison with the compression of
XML as a whole). XML compressors such as XGrind, XQZip
and XPRESS belong to this category.

Non-Queriable XML Compressors: The XML compression
without query support is our area of research interest. This
group of compressors compresses XML without support of
any further XML operations to be processed over the com-
presed version of XML document. Main purpose of those
compressors is to achieve better compression ratios. Such
compressed XML documents are supposed for example to
be archived or transfered over networks (internet, intranet,
slow WAN-links, ...). If some edit operations are required,
these methods require decompression of XML as a whole, and
storage of such modified document results in recompression
of the whole XML document. Compared to the previous group
of compression methods they are characterized by greater
compression efficiency. The following text will only deal with
these methods.

Second classification of XML compressors is based on their
awareness of the structure of XML documents.

General Text Compressors: Group of compressor utilizing
standard general purpose text compression techniques – this is
logical approach as we can consider XML document as plain
text document, which consists of a series of symbols. Com-
pressing XML document as text is straightforward as we can
use standard compression algorithms. Using such compressors
has some advantages – simplicity and speed of deployment,
because text compression algorithms and tools are commonly
available. Deflate or BZip2 represents contemporary industrial
standards. The prospective compression method is based on
PPM algorithm [6]. The PPM algorithm provides very good
results especially for compression of documents written in
some natural language.

XML-aware compressors: These compressors are aware of
XML structure and are designed to achieve better compres-
sion ratio using semantic information present in the XML
structure. This approach exploits the tags in XML document
and assumes that the tags give specific meaning to content
inside the tags. The common feature of this approach is the
separation of data structures from content. Another common
feature is that XML-aware compressor preprocesses XML
data (using semantic information) and final compression is
done by conventional general purpose text compressor (such
as Deflate or BZip2). The traditional compression method,
such as Deflate, can compress the transformed data, XML
document, with even higher efficiency then original data.
Designing XML-aware compressor consits of two parts – first:
deeply understand back-end compressor techniques; second:

data preprocessing design according to back-end compression
properties to achieve better compression. XMill is the most
known representative of such approach.

IV. QUERIABLE XML COMPRESSORS

Altough this group of XML compressors is not area of
our research, it is very interesting to see it’s evolution. It is
important to have in mind that compression ratio is not the
only one parameter we should compare among compressors.
Supported range of operations, including e.g. range of XPath
implementation and/or query performance is quite important
parameter of such queriable XML compressor.

In [1] Tolani and Haritsa have presented the first XML-
aware compressor supporting querying without the need to
full decompres XML document. XGrind uses homomorphic
compression. Homomoprhic compression does not separate
structure and data, it preserves original structure – tags and
data are simply replaced by their encoded values. Element
and attribute names are encoded using a dictionary-based en-
coding, and character data is compressed using semi-adaptive
Huffman coding [12]. Semi-adaptive encoding rules are in-
dependent to the locations of the data (statistical information
is gathered in prelimminary scan of the file) and this is very
important for the ability to decompress only a choosen part
of compressed XML without need to know any preceeding
symbols. Such homomoprhic compressed document can be
processed by standard XML-tools (view XML, index XML,
...). XGrind has some limitations. It can only handle exact-
match and prefix-match queries on compressed values and
partial-match and range queries on decompressed values [1].
However, several operations are not supported by XGrind.

In [19] Min et al. have described another homomorphic que-
riable XML compressor, XPRESS. It uses a reverse arithmetic
encoding method to encode the labels and paths of XML
documents. To improve compression, XPRESS uses proper
encoders for data values based on their automatic inferred type
information. Compression is semi-adaptive.

In [5] Wilfred and Ng have descibed non-homomorphic
compressor XQZip. XQzip addresses both the compression
and query performance problems of previously described XML
compressors. It introduces an indexing structure called the
Structure Index Tree (or SIT) that removes the duplicate struc-
tures in an XML document to improve query performance.
XQzip avoids full decompression by compressing the data into
a sequence of blocks which can be decompressed individually
and at the same. XQzip supports a wide scope of XPath queries
such as multiple, deeply nested predicates and aggregation
– supports a much more expressive query language than its
counterpart technologies such as XGrind and XPRESS.

In [3] Al-Hamadani, Alwan and Lu proposed a another
XML compression technique that obeys the structure of
the XML documents (it is homomorphic compression) and
provides the ability to querying the compressed document
with both content and structure (CAS) queries type. XML
elements and attributes names are encoded by using fixed-point
dictionary-based technique. Other XML data are organized



into special containers according to their type and path from
the root attribute, and the containers are compressed using the
same fixed-point technique. Based on type, each container is
compressed using different encoding techique (such as integer,
floating-point or enumerates).

V. NON-QUERIABLE XML COMPRESSORS

There are two groups of non-queriable XMLcompressors –
schema independent and schema dependent [23]. In schema
depented compressors both of the encoder and decoder must
have access to the document schema information to achieve
the compression process. Although schema dependent com-
pressors may be able to achieve better compression ratios (in
theory), in practice they are not very popular and widely used
because of schema might not always be available for specific
XMLs and thus for this specific XML schema dependant XML
compressor cannot be used. [23] lists and shortly describes
some schema dependant XML compresors such as DTDPPM,
XAUST and others.

In [16] Liefke and Suciu have described implementation
of an XML-aware compressor tool. XMill compressor uses
zlib (gzip function library), a set of specific compressors for
simple data types and, possibly, user defined compressors for
application specific data types. XMill applies three principles
to compress XML data: 1) Separate structure from data, 2)
group releated data items and 3) apply semantic compressors.
Those ideas, introduced by XMill, were followed by many
other XML-aware compressors. The most imporatant part of
compression is data grouping based on their relative path in the
XML structure tree. XMill assumes that tags gives semantic
meaning to data enclosed within them and that relevant data
grouped together will be compressed much more effectively by
general text compressor. Data are grouped into so-called con-
tainers and each container is separately compressed by back-
end compressor, which may vary depending on container type.
Even XML structure, encoded using dictionary-based coding,
is stored in separate container and thus also compressed. Back-
end compressors utilized by XMill are GZip [GZIP], BZip2
[BZIP2] and PPM [6].

In [15], Li describes slightly modified XMill algorithm
called XComp. Some experiments were performed with Huff-
man and GZip compression and the result was only a small
improvement over the original XMill compression.

In citeXMLPPM, Cheney has presented XMLPPM as XML
compressor which uses a Multiplexed Hierarchical PPM
Model called MHMPPM. XMLPPM is based on parsing XML
into stream of encoded SAX events (ESAX, Encoded SAX)
and compressing it using compressors such as gzip or ppm.
Cheney states that using gzip or ppm, ESAX is only 7% or
1% worse than XMill, respectively. Using PPM, the ESAX
is encoded by one of four multiplexed PPM models based
on its syntactic structure (elements, characters, attributes, and
others).

In [2] Adiego, Navarro end Fiente described a compression
model for semistructured documents called Structural Contexts
Model (SCM). Authors has presented various variants SCM,

such as SCMHuff (which utilizes Huffman compression) and
SCMPPM (utilizing PPM compression). The idea behind
SCMPPM is to use a separate model to compress the text that
lies inside each different structure type – that means in every
different XML tag. Ideas behind SCMPPM and previously
described XMLPPM are very close. SCMPPM useses a bigger
set of PPM models than XMLPPM because it uses a different
model for each different tag name.

In [24] Toman proposed a novel syntactical XML com-
pression scheme which makes use of probabilistic modeling
of XML structure. It is based on syntactical compression
techniques of [20] algorithm by Nevill-Manning and Witten
[Sequitur], and grammar-based codes proposed recently by
Kieffer and Yang [Kieffer]. It is utilizing a fact, that XML
document could be described using context-free grammar. Ex-
perimental results listed in [Exalt] are shown to be comparable
to XMill results in terms of compression ratio.

VI. CLUSTER ANALYSIS

Cluster analysis is the process of separating documents,
with the same or similar properties, into groups that are
created based on specific issues. We will call these groups of
documents clusters [13]. Clustering may be applied to terms
or documents when working with documents in IR systems.
Term clustering can be used for creating a thesaurus. Joining
similar documents to a cluster may be done by increasing the
speed level for searching in search engines. The reason for
carrying out a cluster partitioning is explained in hypothesis
about clusters [14]:

When documents are in close proximity, they are
relevant to the same information.

We are going to focus on clustering documents and our
work can be summarized by the following two steps: creating
a cluster and searching for relevant clusters [10].

The process within which the ideal cluster partitioning for
sets of document is searched, and within which there are
mutually similar documents, is called clustering. The cluster
is then formed mutually by a set with similar documents.

In an ideal situation, the clustering procedure should ac-
complish two goals: correctness and effectiveness [10]. The
criteria for correctness follow:

• methods should remain stable while collections grow
or, in other words, distribution into clusters should not
drastically change the addition of new documents,

• small errors in document descriptions should be carried
over as small changes in cluster distributions into clusters,

• a method should not be dependent on its initial document
ordering.

VII. TOPICAL DEVELOPMENT

In the paper [8] we defined ε-k-ball and its behavior in a
space that does not maintain the rules of triangle inequality.
Now, we define the concept k-path, for which the term ”topical
development” will be used.



The definition of k-path: for the given x ∈ X and k ∈ N+,
the set Bk(x) = {y ∈ X;x1, . . . , xk ∈ X, x = x1, y = xk} is
called the k-path centered at the point x.

We can present topical development as a path leading away
from the initial document, through similar documents and
towards other documents pertaining to this document.

We can illustrate this path in a vector space, where our
document forms nodes. The edges between these nodes eval-
uate their similarity. If this path satisfies the conditions for
k-path we can say that it is a proper representation of topical
development.

Thematic similarity between documents in text collections
is influenced by terms that occur in the document. Let us take
a document, which describes a given topic, from a collection
of documents. There may be other documents in our collection
of documents that either entirely, or partially, shares the same
topic (problematic). These documents, however, may use a part
of another word to describe the given topic. The difference
in this word may be caused by various reasons. The first
document may direct a set of words toward the topic and the
second document may include a synonym or it may be more
focused on other circumstances influenced by the chosen topic
(a new fact, a political situation, a new problem trend and so
on).

A. Algorithm Acquired of Topical Development

For acquiring topical development from hierarchal cluster-
ing, we will define the algorithm TOPIC-CA, which uses the
amount of documents in the development as a hindrance.

Definition 7.1: The TOPIC-CA algorithm (see Algorithm
VII.1) for acquiring topical development is defined with the
aid of a dendrogram DTree as list ST = TOPIC CA(dq).
Where dq is a node in the dendrogram for which we want to
generate a topical development.

Algorithm VII.1 Algorithm TOPIC-CA – function
TOPIC CA

function TOPIC CA(node ∈ DTree ∪ null)
L← Empty list
if node 6= null then

AddNodeToEnd(L, node)
while node 6= null do

sibling ← SIBLING(node)
L← SUB(sibling, L)
node← PARENT(node)

end while
end if
return L

end function

The advantage of using this algorithm for acquiring topical
development is low time and space requirement during query-
ing. For searching topical development, we need a dendrogram
with pre-calculated similarity for each individual node of the
dendrogram. The disadvantage is the time required to create
the dendrogram. A calculation of the hierarchal cluster is

Algorithm VII.2 Algorithm TOPIC-CA – function Sub
function SUB(node ∈ DTree ∪ null, list L)

if node = null then
return L

end if
sibling ← SIBLING(node)
if node ∈ leaf nodes of DTree then

AddNodeToEnd(L, node)
else if sibling 6= null then

siblingLeft← LEFTCHILD(sibling)
siblingRight← RIGHTCHILD(sibling)
simLeft ← SIM(node, siblingLeft)
simRight ← SIM(node, siblingRight)
if SimRight ≤ SimLeft then

L← SUB(siblingLeft, L)
L← SUB(siblingRight, L)

else
L← SUB(siblingRight, L)
L← SUB(siblingLeft, L)

end if
end if
return L

end function

performed during the creation of a textual database, so users
entering queries into the IRSs are not influenced by this factor.

The following functions are used in the algorithm:
• TOPIC CA – main function for calculating topical

development (see Algorithm VII.1),
• Sub – function for recursive dendrogram outlet (see

Algorithm VII.2),
• Sim – calculation for similarity of a given cluster in

a dendrogram DTree to a neighbor’s descendant cluster
(see Algorithm VII.3),

• Sibling – acquired neighboring nodes,
• Parent – acquired parent nodes,
• LeftChild – acquired left descendant,
• RightChild – acquired right descendant,
• AddNodeToEnd – addition of a document to resulting

topical development. If the calculation of documents in
a topic is equal to the required amount of documents,
algorithm TOPIC CA ends (to simplify the process, it
is left out of algorithm TOPIC CA).

VIII. USING TOPICAL DEVELOPMENT FOR XML
DOCUMENT COMPRESSION IMPROVEMENT

Ordering of elements in input XML document has not yet
been taken into consideration within the general description
of compression methods. The compression method works
properly for any type of elements ordering. Original ordering
given by XML document itself is probably the simplest of
elements ordering options, i.e. elements are compressed in the
same order as they are written in XML document. Seeing that
compression methods are based on searching repeated parts
of texts, it is easy to surmise that this ordering option is



Algorithm VII.3 Algorithm TOPIC-CA – function Sim.
Calculated proximity of cluster n1 to a descendant of a
neighboring cluster n2 in the hierarchy

function SIM(n1 ∈ DTree ∪ null, n2 ∈ DTree ∪ null)
if node1 = null ∨ node2 = null then

return 0
end if
cn1 ← centroid created from all leafs nodes in n1
cn2
← centroid created from all leafs nodes in n2

sim← similarity between cn1
and cn2

return sim
end function

not necessarily the best solution. Improvement of compression
performance can be achieved by reordering of XML elements.
We improve the ordering of XML elements by moving similar
elements nearer to one another.

This improved ordering can be achieved using a cluster
analysis. Of course, a cluster analysis is very time consuming
so that it is counterproductive to perform the analysis in order
to enhance compression performance alone. However, when
compression methods for IR system are developed, results
from a cluster analysis can be used in query processing [9],
[17] and vice versa. Cluster analysis originally performed
solely for query processing can be incorporated to compres-
sion.

Incorporating a cluster analysis to improve a compression is
common in methods that compress inverted indexes (includes
a list of documents for every indexed term). These methods,
using hierarchical clustering [4] or clustering algorithms, re-
semble the k-means [21].

However, the question of how to convert a hierarchical tree
structure of clusters to a linear list of XMLO elements still
remains. The answer is to use topical development [22], [8],
[18]. The topical development uses one element that specifies
a topic the as starting point of a topic development search-
ing process. This starting element can be chosen arbitrarily,
usually the leftmost node in cluster hierarchical tree.

IX. EXPERIMENTAL RESULTS

A. Experimental XML Files

Several XML data files were used in our experiments,
see Table I. The XML files psd7003.xml, dblp.xml, swis-
sProt.xml, and nasa.xml are free available at http://www.
cs.washington.edu/research/xmldatasets/. These files contains
different databases stored in XML format1. Several thousands
files from Wikipedia XML corpus [7], http://www-connex.
lip6.fr/∼denoyer/wikipediaXML/, were merged to produce test
file wiki.xml. The Table I provides original sizes of test XML
documents and also provides informal time complexity of
clustering used in our experiments.

1Details can be found at specified URL.

TABLE I
XML TEST FILES

File S0 Tc
psd7003.xml 716,860,101 0:27:08
dblp.xml 714,338,879 0:52:24
wiki.xml 541,873,094 0:38:10
swissProt.xml 114,820,211 0:12:41
nasa.xml 25,054,691 0:00:19

TABLE II
XML COMPRESSED AS TEXT WITHOUT CLUSTERING

(a) Size of Compressed XML
File CStgz CStbz CStpp CStlz
psd7003 104,095,774 76,760,863 65,470,863 61,473,674
dblp 117,402,883 77,896,607 56,460,030 77,717,175
wiki 105,741,871 80,597,419 59,888,861 72,825,200
swissProt 13,790,955 8,724,363 5,914,738 6,775,538
nasa 3,723,344 2,752,252 1,945,651 2,415,560

(b) Compression Ratio
File CRtgz CRtbz CRtpp CRtlz
psd7003 14.52 10.71 9.13 8.58
dblp 16.44 10.90 7.90 10.88
wiki 19.51 14.87 11.05 13.44
SwissProt 12.01 7.60 5.15 5.90
nasa 14.86 10.98 7.77 9.64

B. Experimental Results

Several experiments with transformation of elements inside
XML files were preformed. Size of compressed file and
compression ratio were observed during the experiments. First
XML documents were compressed as plain text. The size
of compressed XML documents using given compression
methods are provided in Table II(a), compression ratio are
given in Table II(b). It is obvious, that the best results are
obtained using PPM method with the exception of LZMA
method in one case2. Table IV shows the compression ratios
after the clustering of XML files and also illustrates the
potential benefits of transformation of XML documents. As
can be seen from the Table IV, the transformation of XML
documents has positive impact on compression – δ parameter
is in most cases lower than 1.

The second set of experiments was performed with an
XML-aware compressors XMill. As in previous set of ex-
periments, first XMill was run without any transformation of
input XML documents. Sizes of compressed XML documents
and corresponding compression ratios are given in Tables V(a)
and V(b). The test XML documents were transformed using
clustering in the next step of our experiments. The Table VI
shows the same as in the previous case, the improvement or
deterioration of the results using this method.

X. CONCLUSION

The present information society creates huge quantities
of textual information. This information explosion is being
handled using Information Retrieval Systems. Their tasks are
effective storage and searching in the text collections. The

2The notation for all tables is given in Table III.



TABLE IV
XML COMPRESSED AS TEXT WITH CLUSTERING

File CRtcgz δ(CRtcgz) CRtcbz δ(CRtcbz) CRtcpp δ(CRtcpp) CRtclz δ(CRtclz)
psd7003 13.64 0.9392 10.51 0.9814 8.95 0.9799 8.53 0.9943
dblp 16.52 1.0051 10.79 0.9891 7.87 0.9952 10.74 0.9869
wiki 17.94 0.9192 13.06 0.8779 10.09 0.9126 12.65 0.9414
SwissProt 10.40 0.8660 6.84 0.8998 4.94 0.9590 5.77 0.9771
nasa 14.01 0.9423 10.61 0.9659 7.75 0.9980 9.58 0.9931

TABLE VI
XML COMPRESSED WITH CLUSTERING USING XMILL

File CRxcgz δ(CRxcgz) CRxcbz δ(CRxcbz ) CRxcpp δ(CRxcpp) CRxclz δ(CRxclz )
psd7003 10.52 1.0044 9.68 1.0010 8.58 0.9969 8.53 1.0156
dblp 13.58 0.9992 10.42 0.9855 8.93 1.0050 10.74 1.0105
wiki 17.58 0.9301 14.71 0.9417 12.61 0.9498 12.65 0.9467
SwissProt 6.83 0.9238 5.54 0.9560 4.67 0.9687 5.77 0.9529
nasa 12.22 0.9793 10.32 0.9947 8.60 1.0001 9.58 0.9970

TABLE III
NOTATION USED IN COMPRESSION EXPERIMENTS

Symbol Meaning Units
S0 size of original file bytes
Tc time of clutering hh:mm:ss
CStα size of compressed file using α method and

compressed as text
bytes

CSxα size of compressed file using α method and
compressed using XMill

bytes

CRtα compression ratio using α method and com-
pressed as text

percents

CRtα =
CStα
S0
× 100%

CRxα compression ratio using α method and com-
pressed using XMill

percents

CRxα =
CSxα
S0
× 100%

CStcα size of compressed file using α method and
compressed as text with clustering

bytes

CSxcα size of compressed file using α method and
compressed using XMill with clustering

bytes

CRtcα compression ratio using α method and com-
pressed as text with clustering

percents

CRtcα =
CStcα
S0
× 100%

CRxcα compression ratio using α method and com-
pressed using XMill with clustering

percents

CRxcα =
CSxcα
S0
× 100%

δ(CRtcα ) improvement of compression ratio for given
CR

1

δ(CRtcα ) =
CRtcα
CRtα

δ(CRxcα ) improvement of compression ratio for given
CR

1

δ(CRxcα ) =
CRxcα
CRxα

where α ∈ {gzip, bzip2, ppm, lzma}

amount of text stored in IRS and auxiliary data structures
constitute a suitable material for data compression. However,
the data that form the textual database of every IRS are
very mixed and it is therefore useful to study special data
compression methods.

This paper focuses on improvement of compression of
XML documents based on clustering and rearranging of XML
elements within XML documents. Such transformed XML
documents can be more efficiently compressed. The principle
of improving the compression of XML is rearranging elements

TABLE V
XML COMPRESSED WITHOUT CLUSTERING USING XMILL

(a) Size of Compressed XML
File CSxgz CSxbz CSxpp CSxlz
psd7003 75,091,691 69,335,514 61,688,477 59,119,672
dblp 97,079,361 75,526,149 63,497,428 73,689,071
wiki 102,427,586 84,621,483 71,919,990 83,418,527
swissProt 8,492,438 6,652,068 5,529,656 6,305,849
nasa 3,126,312 2,597,705 2,153,068 2,434,853

(b) Compression Ratio
File CRxgz CRxbz CRxpp CRxlz
psd7003 10.48 9.67 8.61 8.25
dblp.xml 13.59 10.57 8.89 10.32
wiki.xml 18.90 15.62 13.27 15.39
SwissProt.xml 7.40 5.79 4.82 5.49
nasa.xml 12.48 10.37 8.59 9.72

in order to elements with similar content is move as close
as possible to each other. In this way compression algorithm
is allowed to exploit similarity among compressed elements.
After transformation, the compression itself is done using
conventional, universal compression algorithms or using spe-
cialized XML compression tools such as XMill. Experimental
results show that this method has a positive impact across
the tested compression methods. This kind of XML document
transformation is suitable only for documents were rearranging
of elements is possible and is not prohibited by semantics of
the document. The proposed methods has another advantage.
It is not necessary to change used compression algorithms, the
transformation is made just before compression starts.

ACKNOWLEDGEMENT

This work is partially supported by Grant of Grant Agency
of Czech Republic No. 205/09/1079.

REFERENCES

[1] Xgrind: A query-friendly xml compressor. In Proceedings of the 18th
International Conference on Data Engineering, ICDE ’02, pages 225–,
Washington, DC, USA, 2002. IEEE Computer Society.

[2] J. Adiego, G. Navarro, and P. de la Fuente. Using structural contexts to
compress semistructured text collections. Inf. Process. Manage., 43:769–
790, May 2007.



[3] B. T. Al-Hamadani, R. F. Alwan, and J. Lu. Xqpoint: a queriable
homomorphic xml compressor. In Proceedings of the 6th international
conference on Innovations in information technology, IIT’09, pages 26–
30, Piscataway, NJ, USA, 2009. IEEE Press.

[4] D. Blandford and G. Blelloc. Index compression through document
reordering. In Data Compression Conf., pages 342–351, UT, USA, April
2002.

[5] J. Cheng and W. Ng. Xqzip: Querying compressed xml using structural
indexing. In In International Conference on Extending Database
Technology, pages 219–236, 2004.

[6] J. G. Cleary, Ian, and I. H. Witten. Data compression using adaptive cod-
ing and partial string matching. IEEE Transactions on Communications,
32:396–402, 1984.

[7] L. Denoyer and P. Gallinari. The Wikipedia XML Corpus. SIGIR Forum,
2006.

[8] J. Dvorský and J. Martinovič. Improvement of text compression param-
eters using cluster analysis. In V. Snášel, J. Pokorný, and K. Richta,
editors, DATESO, volume 235 of CEUR Workshop Proceedings. CEUR-
WS.org, 2007.

[9] J. Dvorský, J. Martinovič, and V. Snášel. Query expansion and evolution
of topic in information retrieval systems. In V. Snášel, J. Pokorný,
and K. Richta, editors, DATESO, volume 98 of CEUR Workshop
Proceedings, pages 117–127. CEUR-WS.org, 2004.

[10] C. Faloutsos. Fast searching by content in multimedia databases. IEEE
Data Eng. Bull., 18(4):31–40, 1995.

[11] R. L. Haskin. Special-purpose processors for text retrieval. Database
Engineering, 4(1):16–29, 1981.

[12] D. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[13] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[14] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review.
ACM Computing Surveys, 31(3):264–323, 1999.

[15] W. Li. Xcomp: An xml compression tool. Technical report, 2003.
[16] H. Liefke and D. Suciu. Xmill: an efficient compressor for xml data.

SIGMOD Rec., 29:153–164, May 2000.
[17] J. Martinovič and P. Gajdoš. Vector model improvement by fca and topic

evolution. In K. Richta, V. Snášel, and J. Pokorný, editors, DATESO,
volume 129 of CEUR Workshop Proceedings, pages 46–57. CEUR-
WS.org, 2005.

[18] J. Martinovič, T. Novosad, and V. Snášel. Vector model improvement
using suffix trees. In ICDIM, pages 180–187. IEEE, 2007.

[19] J.-K. Min, M.-J. Park, and C.-W. Chung. Xpress: a queriable com-
pression for xml data. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, SIGMOD ’03, pages
122–133, New York, NY, USA, 2003. ACM.

[20] C. Nevill-Manning, Ian, and I. Witten. Compression and explanation
using hierarchical grammars. Computer Journal, 40:103–116, 1997.

[21] S. Orlando, R. Perego, and F. Silvestri. Assigning document identifiers to
enhance compressibility of fulltext indices. In In SAC’04: Proceedings
of the 2004 ACM symposium on Applied computing, pages 222–229.
ACM Press, 2004.

[22] J. Platoš, J. Dvorský, and J. Martinovič. Using clustering to improve
WLZ77 compression. In ICADIWT 2008. First International Conference
on Applications of Digital Information and Web Technologies,, pages 308
– 313. IEEE Computer Society, 2008.

[23] S. Sakr. Xml compression techniques: A survey and comparison. Journal
of Computer and System Sciences, 75(5):303 – 322, 2009.

[24] V. Toman. Syntactical compression of xml data. In Presented at 16th
Intl. Conf. on Advanced Information Systems Engineering (CAiSE04,
2004.


